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Abstract: This paper proposes a new dictionary learning algorithm, Multiple Samples Dictionary 
Learning and Locality Constrained Coding algorithm (MSDL-LCC), to solve the problems that the 
insufficient number of training samples when learning a dictionary and the lack of discriminative 
power of the test coefficient. The proposed algorithm first generates virtual training samples for the 
origin training data, and then uses all the training samples to learn a dictionary. Finally the learned 
dictionary is used to encode the test samples under local constraint to obtain a coefficient matrix with 
discriminative power. Experimental results show that the proposed MSDL-LCC algorithm 
framework outperforms some previous state-of-the-art dictionary learning algorithms on the LFW 
and AR face databases. 

1. Introduction 
In the past few years, Sparse Representation (SR) has attracted the attention of many scholars in 

the field of face recognition [1,2]. The main idea of SR is that samples can be represented by a linear 
combination of a large number of “atoms” where these “atoms” are the column elements of the 
learned dictionary. Dictionary learning (DL), as one of the most important steps in SR, is widely 
studied by various researchers in recent years. 

Various DL methods had been devised for recognition tasks. The K-SVD algorithm is one of the 
most famous DL algorithms [3]. It does not update the entire dictionary matrix at once when updating 
the dictionary, but uses the step of updating the atoms one by one. It improves the convergence speed 
of the algorithm and is widely used. However, this algorithm only emphasizes the reconstruction of 
training samples, so it is not suitable for classification tasks. Zhang et al. [4] considered the 
discriminability of the dictionary and proposed D-KSVD algorithm for classification tasks. Label 
information has a great effect on improving the recognition rate. Jiang et al. [5] added the label 
consistency constraint by connecting label information and each atom based on the K-SVD algorithm. 
On this base, they also added classification error term and proposed two kinds of Label Consistency 
K-SVD (LC-KSVD) algorithm. Xu et al. [6] proposed a sample diversity DL algorithm. By 
generating virtual versions of the original training samples, and using all training samples to the 
process of DL, the problem of insufficient training samples is solved. 

How to obtain sparse and discriminative coding matrix is another research hot point of SR in 
recent years. Locality is more essential than sparsity, since locality leads to sparsity but not necessary 
vice versa [7]. Therefore, more and more researchers focused on locality information preservation. 
Min et al. [8] proposed Laplacian Regularized Locality-constrained Coding algorithm to address the 
problem of vector quantization errors. This algorithm obtained locality information by computing a 
Laplacian matrix. Wang et al. [9] proposed a new coding algorithm which added the local relationship 
between the neighbor feature points. In the above methods, the number of neighbors was usually a 
fixed constant and it would change with different conditions. Therefore, Yuan et al. [10] proposed a 
novel feature coding algorithm, which encoded features based on adaptive coding bases. 

In this paper, dictionary learning and coefficients code of test samples are considered for better 
recognition rates. We adopt a method of generating virtual training samples to increase the number of 
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training samples. During dictionary training, we not only consider the reconstruction error terms of 
the original training samples, but also consider the reconstruction error terms of the virtual training 
samples. Besides, locality constraint is added in test procedure by preserving the distance information 
between test samples and atoms. Therefore, we propose a new algorithm framework, multiple 
samples dictionary learning and locality constrained coding (MSDL-LCC) for recognition tasks. 

The organization of the rest paper is as follows. Section 2 introduces the framework of SR. Section 
3 introduces the proposed MSDL-LCC algorithm. Section 4 depicts the experimental results and 
Section 5 concludes the paper. 

2. Sparse Representation 

Given a signal set Y = [𝑦𝑦1, … , 𝑦𝑦𝑛𝑛] ∈ 𝑅𝑅𝑑𝑑×𝑛𝑛, learning a dictionary for Y can be accomplished by 
solving the following objective function: 

min𝐷𝐷,𝑋𝑋 ||𝑌𝑌 − 𝐷𝐷𝐷𝐷||22, ||𝑋𝑋||0 < 𝑇𝑇0                                                        (1) 

Where 𝐷𝐷 is the learned overcomplete dictionary,  𝑋𝑋 is the representation matrix of  Y. ||X||0 is the 
𝑙𝑙0 form of 𝑋𝑋. And 𝑇𝑇0 is a constant, which controls the degree of sparsity. The K-SVD algorithm [3] is 
always used to solve the problem in formulation of (1). 

After the dictionary matrix 𝐷𝐷 is generated, for a test signal vector 𝑦𝑦𝑖𝑖,its coefficient vector 𝑥𝑥𝑖𝑖 can 
be obtained by solving the following problem: 

𝑥𝑥𝑖𝑖 = min𝑥𝑥𝑖𝑖 ||𝑦𝑦𝑖𝑖 − 𝐷𝐷𝑥𝑥𝑖𝑖||22, ||𝑥𝑥𝑖𝑖||0 < 𝑇𝑇0                                                          (2) 

Where 𝑥𝑥𝑖𝑖  represents the number of nonzero elements. And the famous Orthogonal Matching 
Pursuit algorithm (OMP) [11] is usually used to solve the problem in formulation of (2). 

3. The Proposed Algorithm 
3.1 Notation 

Given a training set Y = [𝑦𝑦1, … ,𝑦𝑦𝑁𝑁] ∈ 𝑅𝑅𝑑𝑑×𝑁𝑁，and a test set H = [ℎ1, … ,ℎ𝑀𝑀] ∈ 𝑅𝑅𝑑𝑑×𝑀𝑀, we assume 
that the training set and the test set contains samples from C classes and all of them consists of all 
samples. Let D = [𝑑𝑑1, … ,𝑑𝑑𝐾𝐾] ∈ 𝑅𝑅𝑑𝑑×𝐾𝐾 be the learned dictionary matrix, where 𝑑𝑑𝑖𝑖 represents an atom 
in dictionary. X = [𝑥𝑥1, … , 𝑥𝑥𝑁𝑁] ∈ 𝑅𝑅𝐾𝐾×𝑁𝑁  and W = [𝑤𝑤1, … ,𝑤𝑤𝑀𝑀] ∈ 𝑅𝑅𝐾𝐾×𝑀𝑀  are the coding matrix of 
training and test data. B = [𝑏𝑏1, … , 𝑏𝑏𝑁𝑁] ∈ 𝑅𝑅𝑁𝑁×𝐶𝐶 is the label matrix of train samples. If the label vector 
of 𝑥𝑥𝑖𝑖 is 𝑏𝑏𝑖𝑖 = [0, … ,1,0, … 0] ∈ 𝑅𝑅1×𝐶𝐶, where the place of nonzero element in 𝑏𝑏𝑖𝑖 is j, 𝑥𝑥𝑖𝑖 belongs to the 
j − th class. 
3.2 The MSDL-LCC Algorithm 

This section will introduce the MSDL-LCC algorithm proposed in this paper in detail. Since the 
proposed algorithm involves dictionary train step and test step, we describe them separately below. 
And the overall process of the MSDL-LCC algorithm are shown in Algorithm1.  

3.2.1 MSDL 
According to [6], virtual samples can be calculated using the principle of mirroring. Specifically, 

for i − th data 𝑦𝑦𝑖𝑖, its virtual version is defined as 

𝑦𝑦𝑖𝑖′(𝑝𝑝, 𝑞𝑞) = 𝑦𝑦𝑖𝑖(𝑝𝑝,𝑄𝑄 − 𝑞𝑞 + 1), (𝑝𝑝 = 1, … ,𝑃𝑃; 𝑞𝑞 = 1, … ,𝑄𝑄)                                    (3) 

Where 𝑦𝑦𝑖𝑖′ is virtual data. 𝑃𝑃 and 𝑄𝑄 are the number of rows and columns of the training sample. 
𝑦𝑦𝑖𝑖(𝑝𝑝, 𝑞𝑞)and 𝑦𝑦𝑖𝑖′(𝑝𝑝, 𝑞𝑞) represent the pixel values of 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑖𝑖′ in the p − th row and q − th column, 
respectively. 

By constructing the error terms of both origin data and virtual data, the objective function of the 
DL model is: 

min𝐷𝐷,𝑋𝑋 ||𝑌𝑌 − 𝐷𝐷𝐷𝐷||22 + 𝛼𝛼||𝑌𝑌′ − 𝐷𝐷𝐷𝐷||22 + 𝛽𝛽||𝑋𝑋||22, 𝑠𝑠. 𝑡𝑡. ||𝑑𝑑𝑖𝑖||2 = 1, 𝑖𝑖 = 1, … ,𝐾𝐾                    (4) 
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Where the first term is the reconstruction error of the original training sample, the second term is 
the reconstruction error of the virtual training sample 𝑌𝑌′, and the third term is the constraint term for 
the coding matrix X. α and β are regularization parameters, used to balance the relationship between 
the three terms.  

The optimization of formulation of (3) is divided into two steps, fixed 𝐷𝐷 to solves 𝑋𝑋 and fixed 𝑋𝑋 to 
solves 𝐷𝐷.When we fix 𝐷𝐷, we can calculate 𝑋𝑋 by taking the first-order derivation of (4) and setting it to 
zero. This led to 

−𝐷𝐷𝑇𝑇(𝑌𝑌 − 𝐷𝐷𝐷𝐷) + 𝛼𝛼(−𝐷𝐷𝑇𝑇)(𝑌𝑌′ − 𝐷𝐷𝐷𝐷) + 𝛽𝛽𝛽𝛽 = 0                                    (5) 

Thus, the optimal 𝑋𝑋 is obtained by 

X = (𝐷𝐷𝑇𝑇D + α𝐷𝐷𝑇𝑇D + βI)−1(𝐷𝐷𝑇𝑇𝑌𝑌 + 𝛼𝛼𝐷𝐷𝑇𝑇𝑌𝑌′)                                      (6) 

Similarly, when we fix 𝑋𝑋,we can calculate 𝐷𝐷 by 

D = (Y𝑋𝑋𝑇𝑇 + α𝑌𝑌′𝑋𝑋𝑇𝑇)(𝑋𝑋𝑋𝑋𝑇𝑇 + 𝛼𝛼𝛼𝛼𝑋𝑋𝑇𝑇)−1                                          (7) 

3.2.2 MSDL 
In the testing phase, this paper considers the local information between the test sample and the 

learned dictionary 𝐷𝐷 , and adds a local constraint term to the objective function of the coding 
coefficients of the test samples. The objective function of the LCC model is 

min𝑤𝑤 ||ℎ𝑖𝑖 − 𝐷𝐷𝐷𝐷||22 + 𝛾𝛾||𝑝𝑝𝑖𝑖 ⊙ 𝑤𝑤||22(8) 

Where ℎ𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑×1  represents the i − th test sample of test matrix H ∈ 𝑅𝑅𝑑𝑑×𝑀𝑀 , 𝑤𝑤𝑖𝑖  is the coding 
coefficient of ℎ𝑖𝑖 and γ is the regularization parameter. The first item is the reconstruction error term. 
The second term is a local constraint, where p  represents the locality adaptor for each atom 
proportional to its similarity to the descriptor ℎ𝑖𝑖  and ⊙ denotes the element-wise multiplication. 
Specifically, 

𝑝𝑝𝑖𝑖𝑖𝑖 = �exp (𝐿𝐿(𝑤𝑤,𝑑𝑑𝑖𝑖𝑖𝑖)
𝜎𝜎

)                                                               (9) 

In (9), L�w,𝑑𝑑𝑖𝑖𝑖𝑖� = ||𝑤𝑤 − 𝑑𝑑𝑖𝑖𝑖𝑖||2 and σ = 1.The larger the value of 𝑝𝑝𝑖𝑖𝑖𝑖, the further the distance 
between the test sample and the dictionary atoms. 

For (8), We solved its closed solution. Its first-order differential form of w is 

2(𝛾𝛾diag(𝑝𝑝𝑖𝑖)2w − 𝐷𝐷𝑇𝑇ℎ𝑖𝑖 + 𝐷𝐷𝑇𝑇Dw)                                                 (10) 
Let formulation of (10) be 0, we can get 

w = (𝐷𝐷𝑇𝑇𝐷𝐷 + 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖)2)−1𝐷𝐷𝑇𝑇ℎ𝑖𝑖                                             (11) 

Where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖) represents the diagonal matrix of the i − th distance vector 𝑝𝑝𝑖𝑖. 
Algorithm1 Procedure of MSDL-LCC 
Input: Training samples set Y = [𝑦𝑦1, … ,𝑦𝑦𝑁𝑁] ,test samples H = [ℎ1, … , ℎ𝑀𝑀] , label matrix of training samples  B =

[𝑏𝑏1, … ,𝑏𝑏𝑁𝑁],parameters: α, β ,and γ, iterations 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. 
Compute virtual samples set 𝑌𝑌′ = [𝑦𝑦1′ , … , 𝑦𝑦𝑁𝑁′ ] by using (3). 

Use K-SVD algorithm to initialize dictionary 𝐷𝐷0 and coding coefficient matrix 𝑋𝑋0. 
for i = 1:𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  

Obtain coefficients matrix 𝑋𝑋 by using (6). 
Compute dictionary 𝐷𝐷 by using (7).                                                                                                                                                                                                                                      

          end for 
Compute a linear classifier coefficient G by using 𝑋𝑋 and label matrix B by using (12). 
for i = 1: M  

Compute coefficients matrix 𝑤𝑤𝑖𝑖  of testing data ℎ𝑖𝑖 by using (11).  
Obtain the label information of ℎ𝑖𝑖 by computing the largest number of 𝐺𝐺𝐺𝐺𝑖𝑖. 

          end for 
Output: The Label information of test sample. 

3.2.3 Classification method 
Following the work of [12], a linear classifier was used for classification tasks in our algorithm and 
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the label of test sample 𝑤𝑤𝑖𝑖 can be obtained by using the following steps. 
A classifier parameter G is obtained by using the coding coefficient matrix X and label matrix B of 

the training samples through the formulation of (12): 

G = B𝑋𝑋𝑇𝑇(𝑋𝑋𝑋𝑋𝑇𝑇 + 𝐼𝐼)−1                                                         (12) 

For a test sample ℎ𝑖𝑖,its coefficient vector 𝑤𝑤𝑖𝑖 was obtained using the LCC model proposed in the 
previous section. Then a label vector l was calculated using 𝐺𝐺𝐺𝐺𝑖𝑖.The label of test data 𝑤𝑤𝑖𝑖 is the index 
corresponding to the largest number of the label vector l. 

4. Experiments results 
In order to verify the performance of our proposed algorithm framework, we perform experiments 

on two public face databases: the Labeled Faces in the Wild(LFW) [6] and the AR face database 
[5],and compare them with some state-of-the-art methods, including LC-KSVD1 [5],LC-KSD2 
[5]and MFI-DL [6].All experiments are performed on the same platform, specifically, software 
Matlab 2016a and Windows 7 system, hardware Intel Core i5-3470 CPU and 8GB ram. All results are 
average values after 10 runs and the symbol ±  denotes the standard deviation of the average 
recognition rates. 

4.1 Experimental results on the LFW database  
The LFW face database contains more than 13,000 face images. Following [6], we use a subset of 

the LFW database to experiment. It consists of 86 people, each of whom had about 11-20 images, 
which together made up to 1251 images. The resolution of these images is 3232× and some examples 
of images are shown in Fig.1. 

     

     
Figure 1. Examples of images from the LFW face database. 

We select six images of each people as training samples and take the rest as test data. Three 
parameters are set to:α = 10−3,β = 10−3, 𝛾𝛾 = 0.05. And the average recognition rates are shown in 
Table 1. It can be found that the recognition of our algorithm is higher other algorithms. 

Different numbers of atoms also directly affect the recognition accuracy, so we also make 
experiments with changing the number of atoms while keeping the other parameters constant. Fig.2 
depicts the average recognition rate of our algorithm and three previous algorithms on the LFW 
database under different numbers of dictionary atoms(K = 86,172, … ,430).  

Table1. Average recognition rates on the LFW database. 

Algorithms Average recognition rates (%) 
LC-KSVD1 26.15±0.009 
LC-KSVD2 26.49±0.013 

MFI-DL 31.35±0.012 
Ours 32.59±0.008 
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4.2 Experimental results on the AR face database 
The AR database contains 126 persons, and each person contains 26 face images taken under 

different lighting conditions and other different external conditions (such as whether wearing 
sunglasses or a scarf). Our experiments use its subset, which consists of 50 males and 50 females, 
with a total of 2600 images. Some examples of the AR faces are shown in Fig.3. 

 
Figure 2.  Average recognition rates with different numbers of atoms on the LFW database. 

It can be seen from figure 2 that the recognition rate of the proposed algorithm is significantly 
higher than that of other algorithms. 

     

     
Figure 3.  Examples of images from the AR face database. 

We randomly choose 8 face images from every category as training samples and the rest of them 
are used for testing. The parameters are respectively set to: α = 10−3, β = 10−3, 𝛾𝛾 = 10−4 .The 
average recognition rates are denoted in Table 2. 

Table2. Average recognition rates on the AR database. 

Algorithms Average recognition rates (%) 
LC-KSVD1 83.81±0.010 
LC-KSVD2 84.31±0.009 

MFI-DL 88.67±0.010 
Ours 91.18±0.006 

Since the number of atoms will affect the recognition rate, experiments are performed on the 
recognition rate of the algorithm under different numbers of atoms.  Figure 4 depicts the average 
recognition rate of our algorithm and three previous algorithms on the AR database under different 
numbers of dictionary atoms (K = 100,200, … ,800) . It can be seen from Figure 4 that the 
recognition rate of proposed algorithm is higher than other 3 algorithms under different numbers of 
atoms. 

5. Conclusion 
In this paper, we propose the MSDL-LCC algorithm to solve the following two problems: 

insufficient number of training samples when training the dictionary and information loss of the 
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coefficient matrix caused by sparse coding during the test step. Experimental results on two public 
face database show that the MSDL-LCC model obtain higher recognition rates than many 
state-of-the-art methods. In addition, learning a discriminative and robust dictionary by using 
multiple layers of structure will be our next research content. 

 
Figure 4. Average recognition rates with different numbers of atoms on the AR face database. 
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